Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1347802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516412

RESUMEN

Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.


Asunto(s)
Encéfalo , Neurogénesis , Humanos , Adulto , Animales , Neurogénesis/fisiología , Encéfalo/fisiología , Neuronas/fisiología , Hormonas Tiroideas/fisiología , Mamíferos
2.
Stem Cell Reports ; 18(2): 534-554, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36669492

RESUMEN

The adult rodent subventricular zone (SVZ) generates neural stem cells (NSCs) throughout life that migrate to the olfactory bulbs (OBs) and differentiate into olfactory interneurons. Few SVZ NSCs generate oligodendrocyte precursor cells (OPCs). We investigated how neurogliogenesis is regulated during aging in mice and in a non-human primate (NHP) model, the gray mouse lemur. In both species, neuronal commitment decreased with age, while OPC generation and myelin content unexpectedly increased. In the OBs, more tyrosine hydroxylase interneurons in old mice, but fewer in lemurs, marked a surprising interspecies difference that could relate to our observation of a continuous ventricle in lemurs. In the corpus callosum, aging promoted maturation of OPCs into mature oligodendrocytes in mice but blocked it in lemurs. The present study highlights similarities and dissimilarities between rodents and NHPs, revealing that NHPs are a more relevant model than mice to study the evolution of biomarkers of aging.


Asunto(s)
Cheirogaleidae , Lemur , Células-Madre Neurales , Animales , Ventrículos Laterales , Vaina de Mielina , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Diferenciación Celular/fisiología
3.
Environ Int ; 172: 107770, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706583

RESUMEN

Neural stem cells in the murine subventricular zone (SVZ) reactivate during postnatal development to generate neurons and glia throughout adulthood. We previously demonstrated that a postnatal thyroid hormone (TH) peak orchestrates this remodelling, rendering this process vulnerable to endocrine disruption. We exposed mice to 2 or 200 µg/kg bw/day of the bisphenol A-replacement and suspected TH-disruptor bisphenol F (BPF) in the drinking water, from embryonic day 15 to postnatal day 21 (P21). In parallel, one group was exposed to the TH-synthesis blocker propylthiouracil (0.15 % PTU). In contrast to PTU, BPF exposure did not affect serum TH levels at P15, P21 or P60. RNA-seq on dissected SVZs at P15 revealed dysregulated neurodevelopmental genes in all treatments, although few overlapped amongst the conditions. We then investigated the phenotype at P60 to analyse long-term consequences of transient developmental exposure. As opposed to hypothyroid conditions, and despite dysregulated oligodendrogenesis-promoting genes in the P15 SVZ exposed to the highest dose of BPF, immunostainings for myelin and OLIG2/CC1 showed no impact on global myelin content nor oligodendrocyte maturation in the P60 corpus callosum, apart from a reduced thickness. The highest dose did reduce numbers of newly generated SVZ-neuroblasts with 22 %. Related to this were behavioural alterations. P60 mice previously exposed to the highest BPF dose memorized an odour less well than control animals did, although they performed better than PTU-exposed animals. All mice could discriminate new odours, but all exposed groups showed less interest in social odours. Our data indicate that perinatal exposure to low doses of BPF disrupts postnatal murine SVZ remodelling, and lowers the adult neuron/oligodendroglia output, even after exposure had been absent for 40 days. These anomalies warrant further investigation on the potential harm of alternative bisphenol compounds for human foetal brain development.


Asunto(s)
Células-Madre Neurales , Embarazo , Femenino , Animales , Ratones , Adulto , Humanos , Neuronas , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Hormonas Tiroideas
5.
Stem Cell Reports ; 17(3): 459-474, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35120623

RESUMEN

Neural stem cells (NSCs) in the adult brain are a source of neural cells for brain injury repair. We investigated whether their capacity to generate new neurons and glia is determined by thyroid hormone (TH) during development because serum levels peak during postnatal reorganization of the main NSC niche, the subventricular zone (SVZ). Re-analysis of mouse transcriptome data revealed increased expression of TH transporters and deiodinases in postnatal SVZ NSCs, promoting local TH action, concomitant with a burst in neurogenesis. Inducing developmental hypothyroidism reduced NSC proliferation, disrupted expression of genes implicated in NSC determination and TH signaling, and altered the neuron/glia output in newborns. Three-month-old adult mice recovering from developmental hypothyroidism had fewer olfactory interneurons and underperformed on short-memory odor tests, dependent on SVZ neurogenesis. Our data provide readouts permitting comparison with adverse long-term events following thyroid disruptor exposure and ideas regarding the etiology of prevalent neurodegenerative diseases in industrialized countries.


Asunto(s)
Hipotiroidismo , Ventrículos Laterales , Animales , Diferenciación Celular , Hipotiroidismo/metabolismo , Ventrículos Laterales/metabolismo , Ratones , Neurogénesis/genética , Neuroglía/metabolismo , Hormonas Tiroideas/metabolismo
6.
Environ Pollut ; 285: 117654, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34289950

RESUMEN

North-Eastern Brazil saw intensive application of the insecticide pyriproxyfen (PPF) during the microcephaly outbreak caused by the Zika virus (ZIKV). ZIKV requires the neural RNA-binding protein Musashi-1 to replicate. Thyroid hormone (TH) represses MSI1. PPF is a suspected TH disruptor. We hypothesized that co-exposure to the main metabolite of PPF, 4'-OH-PPF, could exacerbate ZIKV effects through increased MSI1 expression. Exposing an in vivo reporter model, Xenopus laevis, to 4'-OH-PPF decreased TH signaling and increased msi1 mRNA and protein, confirming TH-antagonistic properties. Next, we investigated the metabolite's effects on mouse subventricular zone-derived neural stem cells (NSCs). Exposure to 4'-OH-PPF dose-dependently reduced neuroprogenitor proliferation and dysregulated genes implicated in neurogliogenesis. The highest dose induced Msi1 mRNA and protein, increasing cell apoptosis and the ratio of neurons to glial cells. Given these effects of the metabolite alone, we considered if combined infection with ZIKV worsened neurogenic events. Only at the fourth and last day of incubation did co-exposure of 4'-OH-PPF and ZIKV decrease viral replication, but viral RNA copies stayed within the same order of magnitude. Intracellular RNA content of NSCs was decreased in the combined presence of 4'-OH-PPF and ZIKV, suggesting a synergistic block of transcriptional machinery. Seven out of 12 tested key genes in TH signaling and neuroglial commitment were dysregulated by co-exposure, of which four were unaltered when exposed to 4'-OH-PPF alone. We conclude that 4'-OH-PPF is an active TH-antagonist, altering NSC processes known to underlie correct cortical development. A combination of the TH-disrupting metabolite and ZIKV could aggravate the microcephaly phenotype.


Asunto(s)
Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Piridinas , Hormonas Tiroideas
7.
Vitam Horm ; 116: 133-192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33752817

RESUMEN

Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.


Asunto(s)
Células-Madre Neurales , Roedores , Animales , Ratones , Neurogénesis/fisiología , Filogenia , Primates/metabolismo , Roedores/metabolismo , Hormonas Tiroideas/fisiología
8.
Stem Cell Reports ; 16(2): 337-353, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33450189

RESUMEN

Adult neural stem cell (NSC) generation in vertebrate brains requires thyroid hormones (THs). How THs enter the NSC population is unknown, although TH availability determines proliferation and neuronal versus glial progenitor determination in murine subventricular zone (SVZ) NSCs. Mice display neurological signs of the severely disabling human disease, Allan-Herndon-Dudley syndrome, if they lack both MCT8 and OATP1C1 transporters, or MCT8 and deiodinase type 2. We analyzed the distribution of MCT8 and OATP1C1 in adult mouse SVZ. Both are strongly expressed in NSCs and at a lower level in neuronal cell precursors but not in oligodendrocyte progenitors. Next, we analyzed Mct8/Oatp1c1 double-knockout mice, where brain uptake of THs is strongly reduced. NSC proliferation and determination to neuronal fates were severely affected, but not SVZ-oligodendroglial progenitor generation. This work highlights how tight control of TH availability determines NSC function and glial-neuron cell-fate choice in adult brains.


Asunto(s)
Encéfalo/metabolismo , Ventrículos Laterales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Madre Neurales/fisiología , Células Precursoras de Oligodendrocitos/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Simportadores/metabolismo , Hormonas Tiroideas/metabolismo , Células Madre Adultas/metabolismo , Animales , Transporte Biológico , Diferenciación Celular , Proliferación Celular , Ratones , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas de Transporte de Catión Orgánico/genética , Simportadores/genética
9.
Front Neurosci ; 14: 875, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982671

RESUMEN

Neurodegenerative diseases are characterized by chronic neuronal and/or glial cell loss, while traumatic injury is often accompanied by the acute loss of both. Multipotent neural stem cells (NSCs) in the adult mammalian brain spontaneously proliferate, forming neuronal and glial progenitors that migrate toward lesion sites upon injury. However, they fail to replace neurons and glial cells due to molecular inhibition and the lack of pro-regenerative cues. A major challenge in regenerative biology therefore is to unveil signaling pathways that could override molecular brakes and boost endogenous repair. In physiological conditions, thyroid hormone (TH) acts on NSC commitment in the subventricular zone, and the subgranular zone, the two largest NSC niches in mammals, including humans. Here, we discuss whether TH could have beneficial actions in various pathological contexts too, by evaluating recent data obtained in mammalian models of multiple sclerosis (MS; loss of oligodendroglial cells), Alzheimer's disease (loss of neuronal cells), stroke and spinal cord injury (neuroglial cell loss). So far, TH has shown promising effects as a stimulator of remyelination in MS models, while its role in NSC-mediated repair in other diseases remains elusive. Disentangling the spatiotemporal aspects of the injury-driven repair response as well as the molecular and cellular mechanisms by which TH acts, could unveil new ways to further exploit its pro-regenerative potential, while TH (ant)agonists with cell type-specific action could provide safer and more target-directed approaches that translate easier to clinical settings.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32477268

RESUMEN

Monocarboxylate transporter 8 (MCT8) deficiency or the Allan-Herndon-Dudley Syndrome (AHDS) is an X-linked psychomotor disability syndrome with around 320 clinical cases described worldwide. SLC16A2 gene mutations, encoding the thyroid hormone (TH) transporter MCT8, result in intellectual disability due to impaired TH uptake in the developing brain. MCT8 deficiency is a multi-organ affecting disease with a predominant neuronal cell-based pathology, with the glial component inadequately investigated. However, deficiency in myelin, a key component of white matter (WM) enabling fast nerve conduction, is a TH-dependent hallmark of the disease. Nevertheless, analysis of the myelin status in AHDS patients has led to conflicting interpretations. The majority of individual case studies reported delayed myelination, that was restored later in life. In contrast, post-mortem studies and high-resolution MRIs detected WM (micro-) abnormalities throughout adolescence, suggesting permanent hypomyelination. Thus, interpretations vary depending on methodology to investigate WM microstructure. Further, it is unknown whether the mutation within the MCT8 is linked to the severity of the myelin deficiency. Consequently, terminology is inconsistent among reports, and AHDS is occasionally misdiagnosed as another WM disorder. The evolutionary conserved TH signaling pathway that promotes the generation of myelinating oligodendrocytes enabled deciphering how the lack of MCT8 might affect myelinogenesis. Linking patient findings on myelination to those obtained from models of MCT8 deficiency revealed underlying pathophysiological mechanisms, but knowledge gaps remain, notably how myelination progresses both spatially and temporally in MCT8 deficiency. This limits predicting how myelin integrity might benefit therapeutically, and when to initiate. A recurrent observation in clinical trials is the absence of neurological improvement. Testing MCT8-independent thyromimetics in models, and evaluating treatments used in other demyelinating diseases, despite different etiologies, is crucial to propose new therapeutic strategies combatting this devastating disease.


Asunto(s)
Enfermedades Desmielinizantes/patología , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Transportadores de Ácidos Monocarboxílicos/deficiencia , Hipotonía Muscular/complicaciones , Atrofia Muscular/complicaciones , Animales , Enfermedades Desmielinizantes/etiología , Humanos
11.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354186

RESUMEN

The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.


Asunto(s)
Disruptores Endocrinos/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Hormonas Tiroideas/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Descubrimiento de Drogas , Disruptores Endocrinos/química , Humanos , Técnicas In Vitro , Internet
12.
Acta Physiol (Oxf) ; 228(1): e13316, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31121082

RESUMEN

In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro- and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro- and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Células-Madre Neurales/fisiología , Hormonas Tiroideas/metabolismo , Vertebrados/fisiología , Animales , Humanos
13.
Sci Rep ; 9(1): 19689, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873158

RESUMEN

Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases.


Asunto(s)
Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Prealbúmina/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Femenino , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Neurogénesis , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Prealbúmina/deficiencia , Prealbúmina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales , Hormonas Tiroideas/metabolismo
14.
Biol Aujourdhui ; 213(1-2): 7-16, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31274098

RESUMEN

Thyroid hormones (THs) are vital for vertebrate brain function throughout life, from early development to ageing. Epidemiological studies show an adequate supply of maternal TH during pregnancy to be necessary for normal brain development, and this from the first trimester of onwards. Maternal TH deficiency irreversibly affects fetal brain development, increasing the risk of offspring cognitive disorders and IQ loss. Mammalian and non-mammalian (zebrafish, xenopus, chicken) models are useful to dissect TH-dependent cellular and molecular mechanisms governing embryonic and fetal brain development: a complex process including cell proliferation, survival, determination, migration, differentiation and maturation of neural stem cells (NSCs). Notably, rodent models have strongly contributed to understand the key neurogenic roles of TH still at work in adult life. Neurogenesis continues in two main areas, the sub-ventricular zone lining the lateral ventricles (essential for olfaction) and the sub-granular zone in the dentate gyrus of the hippocampus (involved in memory, learning and mood control). In both niches, THs tightly regulate the balance between neurogenesis and oligodendrogenesis under physiological and pathological contexts. Understanding how THs modulate NSCs determination toward a neuronal or a glial fate throughout life is a crucial question in neural stem cell biology. Providing answers to this question can offer therapeutic strategies for brain repair, notably in neurodegenerative diseases, demyelinating diseases or stroke where new neurons and/or oligodendrocytes are required. The review focuses on TH regulation of NSC fate in mammals and humans both during development and in the adult.


Asunto(s)
Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Hormonas Tiroideas/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Embarazo , Hormonas Tiroideas/fisiología
15.
Elife ; 62017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28875931

RESUMEN

In the adult brain, both neurons and oligodendrocytes can be generated from neural stem cells located within the Sub-Ventricular Zone (SVZ). Physiological signals regulating neuronal versus glial fate are largely unknown. Here we report that a thyroid hormone (T3)-free window, with or without a demyelinating insult, provides a favorable environment for SVZ-derived oligodendrocyte progenitor generation. After demyelination, oligodendrocytes derived from these newly-formed progenitors provide functional remyelination, restoring normal conduction. The cellular basis for neuronal versus glial determination in progenitors involves asymmetric partitioning of EGFR and TRα1, expression of which favor glio- and neuro-genesis, respectively. Moreover, EGFR+ oligodendrocyte progenitors, but not neuroblasts, express high levels of a T3-inactivating deiodinase, Dio3. Thus, TRα absence with high levels of Dio3 provides double-pronged blockage of T3 action during glial lineage commitment. These findings not only transform our understanding of how T3 orchestrates adult brain lineage decisions, but also provide potential insight into demyelinating disorders.


Asunto(s)
Encéfalo/citología , Encéfalo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Hipotiroidismo , Oligodendroglía/fisiología , Remielinización , Adulto , Animales , Receptores ErbB/metabolismo , Humanos , Yoduro Peroxidasa/metabolismo , Ratones , Receptores alfa de Hormona Tiroidea/metabolismo
16.
Mol Cell Endocrinol ; 459: 104-115, 2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-28545819

RESUMEN

Thyroid hormone (TH) signalling, an evolutionary conserved pathway, is crucial for brain function and cognition throughout life, from early development to ageing. In humans, TH deficiency during pregnancy alters offspring brain development, increasing the risk of cognitive disorders. How TH regulates neurogenesis and subsequent behaviour and cognitive functions remains a major research challenge. Cellular and molecular mechanisms underlying TH signalling on proliferation, survival, determination, migration, differentiation and maturation have been studied in mammalian animal models for over a century. However, recent data show that THs also influence embryonic and adult neurogenesis throughout vertebrates (from mammals to teleosts). These latest observations raise the question of how TH availability is controlled during neurogenesis and particularly in specific neural stem cell populations. This review deals with the role of TH in regulating neurogenesis in the developing and the adult brain across different vertebrate species. Such evo-devo approaches can shed new light on (i) the evolution of the nervous system and (ii) the evolutionary control of neurogenesis by TH across animal phyla. We also discuss the role of thyroid disruptors on brain development in an evolutionary context.


Asunto(s)
Encéfalo/metabolismo , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Efectos Tardíos de la Exposición Prenatal/genética , Hormonas Tiroideas/genética , Animales , Evolución Biológica , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular , Embrión de Mamíferos , Embrión no Mamífero , Disruptores Endocrinos/toxicidad , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Transducción de Señal , Hormonas Tiroideas/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-24808891

RESUMEN

The vital roles of thyroid hormone in multiple aspects of perinatal brain development have been known for over a century. In the last decades, the molecular mechanisms underlying effects of thyroid hormone on proliferation, differentiation, migration, synaptogenesis, and myelination in the developing nervous system have been gradually dissected. However, recent data reveal that thyroid signaling influences neuronal development throughout life, from early embryogenesis to the neurogenesis in the adult brain. This review deals with the latter phase and analyses current knowledge on the role of T3, the active form of thyroid hormone, and its receptors in regulating neural stem cell function in the hippocampus and the subventricular zone, the two principal sites harboring neurogenesis in the adult mammalian brain. In particular, we discuss the critical roles of T3 and TRα1 in commitment to a neuronal phenotype, a process that entails the repression of a number of genes notably that encoding the pluripotency factor, Sox2. Furthermore, the question of the relevance of thyroid hormone control of adult neurogenesis is considered in the context of brain aging, cognitive decline, and neurodegenerative disease.

18.
Mol Ther Nucleic Acids ; 2: e89, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23612115

RESUMEN

RNA interference (RNAi) is a major tool for basic and applied investigations. However, obtaining RNAi data that have physiological significance requires investigation of regulations and therapeutic strategies in appropriate in vivo settings. To examine in vivo gene regulation and protein function in the adult neural stem cell (NSC) niche, we optimized a new non-viral vector for delivery of siRNA into the subventricular zone (SVZ). This brain region contains the neural stem and progenitor cells populations that express the stem cell marker, SOX2. Temporally and spatially controlled Sox2 knockdown was achieved using the monocationic lipid vector, IC10. siRNA/IC10 complexes were stable over time and smaller (<40 nm) than jetSi complexes (≈400 nm). Immunocytochemistry showed that siRNA/IC10 complexes efficiently target both the progenitor and stem cell populations in the adult SVZ. Injection of the complexes into the lateral brain ventricle resulted in specific knockdown of Sox2 in the SVZ. Furthermore, IC10-mediated transient in vivo knockdown of Sox2-modulated expression of several genes implicated in NSC maintenance. Taken together, these data show that IC10 cationic lipid formulation can efficiently vectorize siRNA in a specific area of the adult mouse brain, achieving spatially and temporally defined loss of function.Molecular Therapy-Nucleic Acids (2013) 2, e89; doi:10.1038/mtna.2013.8; published online 23 April 2013.

19.
Cell Stem Cell ; 10(5): 531-43, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22560077

RESUMEN

The subventricular zone (SVZ) neural stem cell niche contains mixed populations of stem cells, transit-amplifying cells, and migrating neuroblasts. Deciphering how endogenous signals, such as hormones, affect the balance between these cell types is essential for understanding the physiology of niche plasticity and homeostasis. We show that Thyroid Hormone (T(3)) and its receptor, TRα1, are directly involved in maintaining this balance. TRα1 is expressed in amplifying and migrating cells. In vivo gain- and loss-of-function experiments demonstrate first, that T(3)/TRα1 directly repress Sox2 expression, and second, that TRα1 overexpression in the niche favors the appearance of DCX+ migrating neuroblasts. Lack of TRα increases numbers of SOX2+ cells in the SVZ. Hypothyroidism increases proportions of cells in interphase. Thus, in the adult SVZ, T(3)/TRα1 together favor neural stem cell commitment and progression toward a migrating neuroblast phenotype; this transition correlates with T(3)/TRα1-dependent transcriptional repression of Sox2.


Asunto(s)
Células Madre Adultas/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/genética , Factores de Transcripción SOXB1/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Movimiento Celular/genética , Proteína Doblecortina , Represión Enzimática/genética , Ratones , Ratones Mutantes , ARN Interferente Pequeño/genética , Factores de Transcripción SOXB1/genética , Transducción de Señal , Nicho de Células Madre/genética , Receptores alfa de Hormona Tiroidea/genética , Hormonas Tiroideas/genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...